Higher-dimensional word problems with applications to equational logic
نویسندگان
چکیده
منابع مشابه
Higher-Dimensional Word Problems with Applications to Equational Logic
In this paper, we answer as follows: the latter problem is nothing but a 2dimensional word problem in a “2-monoid”, which leads to the syntactical study of a 3-category. This crucial observation leads to the general problem for n-paths in an n-category, or even in an ∞-category. A lot of computations made by category theorists are 1-, 2or 3-dimensional, and in fact, n-dimensional computations t...
متن کاملHigher Dimensional Modal Logic
Higher dimensional automata (HDA) are a model of concurrency that can express most of the traditional partial order models like Mazurkiewicz traces, pomsets, event structures, or Petri nets. Modal logics, interpreted over Kripke structures, are the logics for reasoning about sequential behavior and interleaved concurrency. Modal logic is a well behaved subset of first-order logic; many variants...
متن کاملReflection in membership equational logic, many-sorted equational logic, Horn logic with equality, and rewriting logic
We show that the generalized variant of formal systems where the underlying equational specifications are membership equational theories, and where the rules are conditional and can have equations, memberships and rewrites in the conditions is reflective. We also show that membership equational logic, many-sorted equational logic, and Horn logic with equality are likewise reflective. These resu...
متن کاملCompleteness Results for Higher - Order Equational Logic submitted
We present several results concerning deductive completeness of the simply typed λcalculus with constants and equational axioms. First, we prove deductive completeness of the calculus with respect to standard semantics for axioms containing neither free nor bound occurrences of higher-order variables. Using this result, we analyze some fundamental deductive and semantic properties of axiomatic ...
متن کاملHigher Dimensional Diophantine Problems
1. Rational points. A classical conjecture of Mordell states that a curve of genus ^ 2 over the rational numbers has only a finite number of rational points. Let K be a finitely generated field over the rational numbers. Then the same statement should hold for a curve defined over K, and a specialization argument due to Néron shows in fact that this latter statement is implied by the correspond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 1993
ISSN: 0304-3975
DOI: 10.1016/0304-3975(93)90054-w